

Can Immunotherapies Enhance Surgical Outcomes in HCC?

Real-world data from APAC INSIGHT Registry

Between Jan 2013 – Dec 2019, 2,533 HCC patients were recruited from 9 countries in Asia Pacific

- 1,052 in retrospective cohort and 1,481 in prospective cohort
- Australia, New Zealand, Korea, Taiwan, Hong Kong, Japan, China, Thailand and Singapore

Distribution of patients by BCLC Stage receiving surgical resection

Survival outcomes across all stages of HCC stratified based on modality

Systemic Therapy

How can immunotherapies potentially enhance surgical outcomes in HCC?

Adjuvant /neoadjuvant therapy: Reduce recurrence in resectable HCC

For patients who undergo resection, early recurrence of disease (within 2 years) can significantly impact OS

Resection is specifically indicated for BCLC stage 0/A HCC¹; however, patients with BCLC stage B/C are often referred for resection and many have clinical features that increase the risk of HCC recurrence^{2,3}

Adjuvant treatment may overcome the risk of early HCC recurrence and improve patient prognosis; however, there are currently no approved agents in this setting for HCC – this represents an urgent unmet need⁶

> 1. Reig et al. J Hepatol 2022; 2. Guo et al. Cancer Manag Res 2018; 3. Torzilli et al. Arch Surg 2008 4. Imamura et al. I J of Hepatology 2003; 5. Jung et al. J Gastrointest Surg 2019; 6. Hack et al. Future Oncol 2020.

Alongside tumour size/number, microvascular invasion may be a critical risk factor for early recurrence following resection^{1–3*}

Vascular invasion has previously been associated with increased tumour size and number,¹ but these data suggest microvascular invasion is an independent negative prognostic marker in both multinodular and large HCC

*There are no validated criteria used to define high-risk patients following surgical resection

ORIGINAL ARTICLE

QMH Experience

Evaluation of the seventh edition of the American Joint Committee on Cancer tumour-node-metastasis (TNM) staging system for patients undergoing curative resection of hepatocellular carcinoma: implications for the development of a refined staging system

Factors	Р	Hazard ratio	95% confidence interval
Albumin	0.017	0.978	0.961 – 0.996
Platelet count	< 0.001	0.998	0.996 – 0.999
Tumour > 5 cm	0.003	1.037	1.012 - 1.061
Bilobar HCC	0.035	1.304	1.019 – 1.670
Symptomatic HCC	0.004	1.355	1.099 - 1.670
Multiple tumours	< 0.001	1.633	1.349 - 1.976
Microvascular invasion	< 0.001	1.910	1.592 - 2.291

Chan AC, Fan ST, Lo CM et al. HPB 2013

STORM: Adjuvant sorafenib vs placebo failed to demonstrate an RFS benefit

- Phase 3, randomised, double-blind, placebo-controlled study in 28 countries (APAC: 59%; EU: 30%; America: 11%)
- Indication for resection/ablation based on BCLC/EASL, excluded patients with small solitary HCC, AFP >400 ng/L
- Vast majority of patients randomised had solitary, low volume HCC

Adjuvant autologous cytokine induced killer cells demonstrated a significant RFS benefit

• Multicentre, randomised, open-label, phase 3 trial in Korea

p=0.010

- · Post-surgical resection, RFA, or percutaneous ethanol injection
- 2 arms: Immunotherapy (injection of 6.4 × 10⁹ autologous CIK cells, 16 times during 60 weeks) or no adjuvant (control)

Lee JH et al. Gastroenterology. 2015.

Adjuvant Sintilimab (PD-1 Inhibitor) vs active surveillance demonstrated RFS benefit

- Open-label, randomised, phase 2 trial with 198 patients from 6 Chinese hospitals
- Majority HCC of CHB aetiology with microvascular invasion

Baseline patient characteristics

Characteristics	Active surveillance group (<i>n</i> =99)	Sintilimab group (n=99)
Age (years), median (IQR)	54.0 (49.0–61.0)	53.0 (48.0–61.0)
Sex, n (%)		
Male	83 (83.8)	85 (85.9)
Female	16 (16.2)	14 (14.1)
Etiology, n (%)		
Hepatitis B	75 (75.8)	70 (70.7)
Hepatitis C	2 (2.0)	3 (3.0)
Other	22 (22.2)	26 (26.3)
Heavy drinking, n (%)		
Yes	21 (21.2)	30 (30.3)
No	78 (78.8)	69 (69.7)
Cirrhosis, n (%)		
With	56 (56.6)	44 (44.4)
Without	43 (43.4)	55 (55.6)
Tumor size, n (%)		
>5cm	51 (51.5)	58 (58.6)
≤5cm	48 (48.5)	41 (41.4)
Tumor number, n (%)		
3	4 (4.0)	2 (2.0)
2	9 (9.1)	10 (10.1)
1	86 (86.9)	87 (87.9)
MVI grade, n (%)		
High-risk	50 (50.5)	40 (40.4)
Low-risk	49 (49.5)	59 (59.6)

Phase 3 Global Adjuvant Immunotherapy Trials in HCC

Trial no	Sponsor	n	Centers	Eligibility	Therapy 1	Therapy	2 Primary Endpoint	Start		End	Status	Protocol Chair
NCT03867084 (KEYNOTE- 937)	Merck Sharp & Dohme Corp.	950	193 sites	 Complete radiological response ≥4 weeks after complete surgical resection/ablation Randomization within 12 weeks of the date of surgical resection or local ablation 	Pembrolizumab at 200 mg on Day 1 o each 21-day cycle up to 17 cycles.	for Placebo on Day 1 of ea 21-day cycl for up to 17 cycles.	ch RFS (up to 6 e years) OS	May 28, 20	19 Oct 3	31, 2027	Active, Not Recruiting	MSD
NC T04102098 (IMbrave050)	Hoffmann- La Roche	662	173 sites	1 st diagnosis of HCC and curative resection or ablation (RFA or MVA) • No MVI/EHS • ECOG status of 0-1 • Child-Pugh A	Atezolizumab 1200mg and Bevacizumab 15mg/kg will be administered on D 1 of each 21-day cycle.	Nil. Active surveillanc	RFS (Up to 39 months)	Dec 31, 20	19 Jul 1	16, 2027	Active, Not Recruiting	Clinical Trials, Hoffmann- La Roche
NCT03383458 (CheckMate 9DX)	Bristol- Myers Squibb	530	218 sites	 Resection or ablation ECOG status of 0-1 Child Pugh score of 5-6 No tumor metastasis or co- existing malignant disease 	Nivolumab – specified dose on specified days.	Placebo – specified d on specifie days.	ose (Up to 49 months)	Dec 18, 20	17 Dec	16, 2025	Active, Not Recruiting	BMS
Trial no	Sponsor	n	Centers	Eligibility	Therapy 1	Therapy 2	Therapy 3	Primary Endpoint	Start	End	Status	Protocol Chair
NCT03847428 (EMERALD-2)	Astrazeneca	888	182 sites	 Resection / ablation Histologically confirmed HCC and has completed curative therapy ECOG status of 0-1 Child Pugh score of 5-6 No evidence of metastasis, macrovascular invasion or co-existing disease 	Durvalumab 1120mg (Q3W) and Bevacizumab 15mg/kg (Q3W).	Durvalumab 1120mg (Q3W) H Bevacizumab blacebo (Q3W).	Durvalumab <mark>placebo</mark> (Q3W) + Bevacizumab <mark>placebo</mark> (Q3W).	RFS (Up to 49 months)	Apr 29 2019	May 29 2026	Active, Not Recruiting	Jia Fan and Jennifer Knox

IMbrave 050 Study design

ClinicalTrials.gov, NCT04102098. ECOG PS; Eastern Cooperative Oncology Group performance status; Q3W, every three weeks; R, randomization; TACE, transarterial chemoembolization.

^a High-risk features include: tumor >5 cm, >3 tumors, microvascular invasion, minor macrovascular invasion Vp1/Vp2, or Grade 3/4 pathology.

^b Intrahepatic recurrence defined by EASL criteria. Extrahepatic recurrence defined by RECIST 1.1.

High-risk criteria by curative treatment

Curative treatment	Criteria for high risk of HCC recurrence
Resection	 ≤3 tumors, with largest tumor >5 cm regardless of vascular invasion,^a or poor tumor differentiation (Grade 3 or 4) ≥4 tumors, with largest tumor ≤5 cm regardless of vascular invasion,^a or poor tumor differentiation (Grade 3 or 4) ≤3 tumors, with largest tumor ≤5 cm with vascular invasion,^a and/or poor tumor differentiation (Grade 3 or 4)
Ablation ^b	 1 tumor >2 cm but ≤5 cm Multiple tumors (≤4 tumors), all ≤5 cm

^a Microvascular invasion or minor macrovascular portal vein invasion of the portal vein—Vp1/Vp2.

^b Ablation must be radiofrequency ablation or microwave ablation.

Baseline characteristics were balanced across arms

Characteristic	Atezo + bev (n=334)	Active surveillance (n=334)	Characteristic	Atezo + bev (n=334)	Active surveillance (n=334)
Median age (range), years	60 (19-89)	59 (23-85)	Resection, n	293	292
Male sex, n (%)	277 (82.9)	278 (83.2)	Longest diameter of		
Ethnicity, n (%)	276 (82.6)	269 (80 5)	(range), cm	5.3 (1.0-18.0)	5.9 (1.1-25.0)
Asian white Other	35 (10.5) 23 (6.9)	41 (12.3) 24 (7.2)	Tumours, n (%)	266 (90.8)	260 (89.0)
Geographic region, n (%)	(((((((((1 2 1	27 (9.2)	32 (11.0) ่
Asia Pacific excluding Japan Rest of world	237 (71.0) 97 (29.0)	238 (71.3) 96 (28.7)	Adjuvant TACE following resection, n (%)	33 (11.3)	34 (11.6)
ECOG PS score, n (%)			Any tumours >5 cm, n (%)	152 (51.9)	175 (59.9)
0 1	258 (77.2)	269 (80.5)	mVI present, n (%)	179 (61.1)	176 (60.3)
	76 (22.8)	65 (19.5)	Minor MVI (Vp1/Vp2)	21 (7.2)	17 (5.8)
PD-L1 status , n (%) ^{a,b} ≥1% <1%	154 (54.0) 131 (46.0)	140 (50.4) 138 (49.6)	present, n (%) Poor tumour differentiation (Grade 3 or 4), n (%)	124 (42.3)	120 (41.1)
Etiology, n (%)	х <i>У</i>		Outside up-to-7 criteria, n (%)	135 (46.1)	148 (50.7)
Hepatitis B Hepatitis C Non viral Unknown	210 (62.9) 34 (10.2) 45 (13.5) 45 (13.5)	208 (62.3) 38 (11.4) 41 (12.3) 47 (14.1)	Ablation, n Longest diameter of	41	42
BCLC stage, n (%)	2 (0 6) 286 (85 6)		(range), cm	2.5 (1.2-4.6)	2.0 (1.5-4.0)
0 A B C	25 (7.5) 21 (6.3)	3 (0.9) 281 (84.1) 31 (9.3) 19 (5.7)	Tumours, n (%) 1 >1	29 (70.7) 12 (29.3)	31 (73.8) 11 (26.2)

Yopp et al.

IMbrave050 update https://ter.li/q4cyl1

Clinical cutoff: 3 May 2024; median follow-up duration: 35.1 mo. Minor changes to baseline characteristics have been made following the IA. BCLC, Barcelona Clinic Liver Cancer; mVI, microvascular invasion; MVI, macrovascular invasion. ^a n=285 for atezo + bev and 278 for active surveillance. ^b PD-L1 expression is defined as the total percentage of the tumour area covered by tumour and immune cells stained for PD-L1 using the SP263 immunohistochemistry assay (VENTANA).

Primary endpoint: RFS from first IA

Clinical cutoff: October 21, 2022; median follow-up duration: 17.4 mo. At clinical cutoff, 110 of 334 patients (33%) in the atez o + bev arm and 133 of 334 (40%) in the active surveillance arm experienced disease recurrence or death.

FU, follow-up; NE, not estimable. HR is stratified. P value is a log rank.

APRIL 14-19 • #AACR23

Early RFS benefit was not maintained with longer follow-up

Clinical cutoff: 3 May 2024; median follow-up duration: 35.1 mo. At clinical cutoff, 162 of 334 patients (49%) in the atezo + bev arm and 164 of 334 (49%) in the active surveillance arm experienced disease recurrence or death. HRs are stratified. *P* values are log rank. FU, follow-up; NA, not applicable; NE, not estimable. 1. Qin et al. Lancet 2023. 2. Chow et al. AACR 2023 [abstract CT003].

Yopp et al. IMbrave050 update https://ter.li/q4cyl1

Subgroup analysis for RFS

BARCELONA 2024	ESMO ^{congress}
-------------------	---------------------------------

Baseline risk factors	No. of patients	Unstratified HR (95% CI)	Baseline risk factors	No. of patients	Unstratified HR (95% CI)
All patients	668	0.91 (0.73, 1.13)	Hepatitis B etiology	418	0.96 (0.72, 1.27)
<65 years old	427	0.98 (0.75, 1.28)	Hepatitis C etiology	72	1.04 (0.55, 1.99)
≥65 years old	241	0.78 (0.54, 1.13)	Non-viral etiology	86	
Male	555	0.91 (0.72, 1.15)	Unknown etiology	92 —	0.64 (0.36, 1.13)
Female	113	0.96 (0.53, 1.73)	Resection	585	→ <u>+</u> 0.89 (0.71, 1.12)
Asian	545	0.90 (0.70, 1.15)	Ablation	83	1.04 (0.55, 1.97)
White	78	0.79 (0.42, 1.48)	In patients who underwent resea	ction:	
Other race	45	1.32 (0.61, 2.86)	1 tumour	526	0.91 (0.71, 1.17)
ECOG PS 0	527	0.84 (0.65, 1.07)	>1 tumours	59 —	0.75 (0.39, 1.45)
ECOG PS 1	141	1.19 (0.75, 1.88)	Tumour size >5 cm	327	→ ¹ 0.84 (0.64, 1.12)
PD-L1 ≥1%	294	0.98 (0.70, 1.37)	Tumour size ≤5 cm	258	i● 1.10 (0.73, 1.65)
PD-L1 <1%	269	0.73 (0.53, 1.02)	mVI present	358	0.96 (0.72, 1.28)
Unknown PD-L1	105	1.39 (0.78, 2.49)	mVI absent	227	0.78 (0.53, 1.15)
1 high-risk feature ^a	312	0.85 (0.60, 1.22)	Poor tumour differentiation	244	0.83 (0.58, 1.17)
>1 high-risk features ^a	273	0.94 (0.69, 1.27)	No poor tumour differentiation	341	0.94 (0.69, 1.28)
BCLC 0/A	572	0.92 (0.73, 1.18)	Received TACE	67	1.20 (0.62, 2.31)
BCLC B	56 -	0.78 (0.39, 1.56)	Did not receive TACE	518	0.86 (0.67, 1.10)
BCLC C	40	0.99 (0.47, 2.11)	Within up-to-7 criteria	302	1.01 (0.70, 1.46)
		i i i	Outside up-to-7 criteria	283	0.84 (0.62, 1.13)
	0.3 Atezo + be	← 1 → 3 Active surveillance better		0.3 <	1 → 3

Yopp et al. IMbrave050 update https://ter.li/q4cyl1

Clinical cutoff: 3 May 2024; median follow-up duration: 35.1 mo. ^a Patients who underwent ablation were categorized as NA.

RFS among resection patients was numerically better in those who were outside up-to-7 criteria

Within up-to-7 criteria

Yopp et al. IMbrave050 update https://ter.li/q4cyl1

Clinical cutoff: 3 May 2024; median follow-up duration: 35.1 mo.

Updated OS remained immature but showed numerical improvement from the first IA

Clinical cutoff: 3 May 2024; median follow-up duration: 35.1 mo. HRs are stratified. *P* values are log rank. 1. Qin et al. Lancet 2023.

Recurrence patterns

First post-baseline unequivocal recurrence

Patients with intrahepatic recurrence

(regardless of extrahepatic recurrence)

	Atezo + bev (n=334)	Active surveillance (n=334)
Patients with recurrence, n	141	160
Location of recurrence, n (%)		
Intrahepatic only	103 (73.0)	109 (68.1)
Extrahepatic only	35 (24.8)	44 (27.5)
Both intra- and extrahepatic	3 (2.1)	7 (4.4)
Outside Milan criteria, n (%)		
Yes	51 (36.2)	67 (41.9)
No	89 (63.1)	89 (55.6)
NA ^a	1 (0.7)	4 (2.5)
Outside up-to-7 criteria, n (%)		
Yes	51 (36.2)	67 (41.9)
No	89 (63.1)	89 (55.6)
NA ^a	1 (0.7)	4 (2.5)

	Atezo + bev (n=334)	Active surveillance (n=334)
Intrahepatic recurrence, n	106	116
Macrovascular invasion, n (%)		
Yes	14 (13.2)	15 (12.9)
No	92 (86.8)	100 (86.2)
Not evaluable	0	1 (0.9)
Tumour liver lobe invasion, n (%)		
Unilobar	99 (93.4)	110 (94.8)
Bilobar	7 (6.6)	6 (5.2)

Clinical cutoff: 3 May 2024; median follow-up duration: 35.1 mo. ^a Patients were considered NA for Milan and up-to-7 criteria if they did not have extrahepatic spread or MVI and had ≥1 non-measurable lesion.

First post-recurrence treatment

	Atezo + bev (n=147)	Active surveillance (n=156)
Curative intent, n (%)	49 (33.3)	59 (37.8)
Resection	28 (19.0)	28 (17.9)
Radiofrequency ablation	17 (11.6)	17 (10.9)
Microwave ablation	4 (2.7)	13 (8.3)
Other	0	1 (0.6)
Locoregional, n (%)	45 (30.6)	18 (11.5)
Embolisation	32 (21.8)	13 (8.3)
Radiation	13 (8.8)	5 (3.2)
Systemic therapy, n (%)	33 (22.4)	72 (46.2)
Atezolizumab + bevacizumab	3 (2.0)	61 (39.1)
Immunotherapy	2 (1.4)	2 (1.3)
Immunotherapy + TKI/immunotherapy + VEGF(R) mAb	11 (7.5)	2 (1.3)
Other	4 (2.7)	1 (0.6)
ТКІ	12 (8.2)	6 (3.8)
VEGF(R) mAb	1 (0.7)	0

Clinical cutoff: 3 May 2024; median follow-up duration: 35.1 mo. Recurrence was assessed by the investigator. For the active surveillance arm, resection/radiofrequency ablation/microwave ablation received at crossover screening and crossover atezo + bev treatment, whichever was the first, was included. mAb, monoclonal antibody; TKI, tyrosine kinase inhibitor; VEGF(R), vascular endothelial growth factor (receptor).

Yopp et al. IMbrave050 update https://ter.li/q4cyl1

Overall safety trend was the same as the first IA

Treatment duration, median, mo

Patients with ≥1 AE, n (%)

Treatment related AE

Treatment-related AL	200 (00.0)	11/2
Grade 3/4 AE, n (%)	141 (42.5)	46 (13.9)
Treatment-related Grade 3/4 AE	120 (36.1)	NA
Serious AE, n (%)	83 (25.0)	34 (10.3)
Treatment-related serious AE	45 (13.6)	NA
Grade 5 AE, n (%)	6 (1.8)	1 (0.3)
Treatment-related Grade 5 AE	2 (0.6) ^a	NA
AE leading to dose interruption of any study treatment, n (%)	158 (47.6)	NA
AE leading to withdrawal from any study treatment, n (%)	62 (18.7)	NA

Clinical cutoff: 3 May 2024; median follow-up duration: 35.1 mo. In safety-evaluable patients. No additional Grade 5 AEs occurred in the atezo + bev arm since the first IA. AE, adverse event. ^a Oesophageal varices haemorrhage and ischaemic stroke; 1 was related to atezo and bev and the other was related to bev only.

Yopp et al. IMbrave050 update https://ter.li/q4cvl1

congress

AE of any grade with an incidence rate of ≥10% in either treatment group by preferred term

APRIL 14-19 • #AACR23

Event, n (%)	Atezo + bev (n=332)		Active surveillance (n=330)	
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4
Proteinuria	154 (46.4)	29 (8.7)	12 (3.6)	0
Hypertension	127 (38.3)	61 (18.4)	10 (3.0)	3 (0.9)
Platelet count decreased	66 (19.9)	15 (4.5)	22 (6.7)	4 (1.2)
Aspartate aminotransferase increased	52 (15.7)	3 (0.9)	18 (5.5)	2 (0.6)
Alanine aminotransferase increased	47 (14.2)	2 (0.6)	18 (5.5)	3 (0.9)
Hypothyroidism	47 (14.2)	0	1 (0.3)	0
Arthralgia	40 (12.0)	1 (0.3)	8 (2.4)	1 (0.3)
Pruritus	40 (12.0)	1 (0.3)	3 (0.9)	0
Rash	40 (12.0)	0	1 (0.3)	0
Blood bilirubin increased	34 (10.2)	1 (0.3)	23 (7.0)	1 (0.3)
Pyrexia	34 (10.2)	0	7 (2.1)	0

Clinical cutoff: October 21, 2022; median follow-up duration: 17.4 mo. In safety-evaluable patients.

Chow et al IMbrave050 https://bit.ly/3ZPKzgM ___

What have we learned, and questions raised?

What is the ideal duration of adjuvant therapy?

• 1 year or longer?

Should we expect improvement in RFS to result in improved OS?

- Crossover
- Second tumor bimodal relapse curve

How do we select patients likely to benefit from adjuvant therapy?

- Predictive biomarkers
- High-risk features (e.g., beyond up-to-7)

Future Directions...

Neoadjuvant/peri-operative approaches?

Pros and cons of neoadjuvant vs adjuvant approaches

Advantages and disadvantages of approaches to perioperative treatment in HCC

	Adjuvant (resectable)	Neoadjuvant (resectable)	Downstaging/ conversion	Transplant neoadjuvant/ downstaging
Rationale	Reduce recurrences and improve OS	Reduce recurrences and improve OS Improve surgical outcomes	Improve chance for curative resection Limit extent of surgery	Improve chances for transplant/cure
Advantages	RFA and surgery may augment immune response No delay of resection Histology-informed patient selection	Tumor in situ Generate diverse immune response Faster endpoints, eg, MPR Translational research	Downstage to resectability Treats micrometastatic disease	May improve outcomes in high-risk patients
Disadvantages		Toxicity Delay of surgery		Toxicity Graft rejection

Abbreviations: MPR, major pathologic response; OS, overall survival; RFA, radiofrequency ablation.

Published or present neoadjuvant trials of ICI/ICI combinations in resectable or potentially resectable HCC

Trial/NCT	Phase	Treatment arms	N	1ºEP	Adjuvant	MPR definition	MPR, n (%)	pCRª, n (%)	ORR	Dropout rate ^b	Surgical delays, (n/%)
Marron et al ^[14] NCT03916627	2	Cemiplimab	21	MPR	6 mo	>70%	<mark>4/20 (</mark> 20%)	3/20 (15%)	<mark>3/2</mark> 0 (15%)	1/21 (5%)	1 (5.8%)
Kaseb et al ^[15] NCT03222076	2	Nivolumab vs. Nivolumab/ Ipilimumab	27	Safety/tolerability	2 y	>70%	3/9 (33%) 3/11 (27%)	2/9 (22%) 3/11 (27%)	3/13 (23%) 0/11(0%)	7/27 (26%)	0
Xia et al ^[16] NCT04297202	2	Camrelizumab/Apatinib	18	ORR MPR	6 mo	>90%	3/17 <mark>(18%</mark>)	1/17 (6%)	3/18 (17%)	1/18 (6%)	0
Ho et al ^[17] NCT03299946	1	Cabozantinib/Nivolumab	15	Safety/tolerability	No	>90%	5/12 (42%)	1/12 (8%)	1/14 (7%)	3/15 (20%)	0
PRIME-HCC NCT03682276	1b/2	Ipilimumab/Nivolumab	26	Delay to surgery/safety	No	>70%	8/19 (42%)	<mark>6/1</mark> 9 (32%)	6/23 (26%)	1/20 (0.5)	1 (4%)
Shi et al ^[18] NCT03867370	1b/2	Toripalimab vs Toripalimab/ Lenvatinib	16	MPR	48 wk	> 50%	2/8 (25%) 1/8 (13%)	1/16 (6%)	NA	0/16 (0%)	0

Ph Ib/II MORPHEUS neo-HCC: Study Design (Study Ongoing)

A study evaluating the efficacy and safety of **neoadjuvant immunotherapy** combinations in patients with surgically resectable hepatocellular carcinoma

Primary endpoint

Major pathological response

Secondary endpoints

- Pathological complete response (pCR)
- Relapse-free survival (RFS)
- Event-free survival (EFS)
- Overall survival (OS)

- OS rate at 24 months
- Overall Response Rate (ORR)
- Proportion of participants downstaged to within Milan criteria
- R0 resection rate

Emergence of treatment paradigm in advanced unresectable HCC with conversion therapy

- Current Status of Conversion Therapy
 - Advanced HCC poses survival challenges
 - Effective tumor downstaging brings surgical opportunities for uHCC patients
 - Diverse combined conversion approaches show remarkable and promising results
 - Lack of guidelines or standard protocols

Multi Disciplinary Team (MDT Model)

- Establishment of a stable MDT
- Convenient communication channels
- Comprehensively evaluation
- Timely decision-making or adjustment of treatment strategies

Ultimate goal

High-quality Long-term Survival

In China, HCC conversion therapy has made significant progress in recent years

2019

Conversion therapy was first listed as one of the treatment options for unresectable HCC by Chinese guidelines²

2021

1990s

Studies reported 5-year survival rates of 50-60% in patients undergoing 'conversion and resection', **preliminarily demonstrating the benefit of conversion therapy**¹

The Chinese expert consensus on conversion therapy for hepatocellular carcinoma was published³

Review Article

Chinese expert consensus on conversion therapy for hepatocellular carcinoma (2021 edition)

Hui-Chuan Sun¹, Jian Zhou¹, Zheng Wang¹, Xiufeng Liu², Qing Xie³, Weidong Jia⁴, Ming Zhao⁵, Xinyu Bi⁶, Gong Li⁷, Xueli Bai⁸, Yian Ji⁹, Li Xu¹⁰, Xiao-Dong Zhu¹, Dousheng Bai¹¹, Yajin Chen¹², Yongjun Chen¹³, Chaoliu Dai¹⁴, Rongping Guo¹⁵, Wenzhi Guo¹⁶, Chunyi Hao¹⁷, Tao Huang¹⁶, Zhiyong Huang¹⁰, Deyu Li²⁰, Gang Li²¹, Tao Li²², Xiangcheng Li²¹, Guoangming Li²⁴, Xiao Liang²⁵, Jingfeng Liu²⁶, Fubao Liu²⁷, Shichun Lu²⁸, Zheng Lu²⁰, Weifu Lv¹⁰, Yilei Mao¹¹, Guoliang Shao¹², Yinghong Shi^{1,33}, Tianqiang Song¹⁴, Guang Tan¹⁵, Yunqiang Tang³⁶, Kaishan Tao¹⁷, Chidan Wan¹⁸, Guangyi Wang¹⁹, Lu Wang⁴⁰, Shunxiang Wang⁴¹, Tianfu Wen⁴², Baocai Xing⁴¹, Bangde Xiang⁴⁴, Sheng Yan⁴⁵, Dinghua Yang⁴⁶, Guowen Yin⁴⁷, Tao Yin⁴⁸, Zhenyu Yin⁴⁹, Zhengping Yu⁴⁰, Bixiang Zhang¹⁹, Jialin Zhang⁵¹, Shuijun Zhang⁵¹, Zhenyu Zhu⁴⁰, Shukui Qin⁴¹, Feng Shen⁴², Aiujun Cai⁶⁵, Gaojun Teng⁴⁴, Jianqiang Cai⁶⁵, Minshan Chen⁶⁶, Qiang Li⁶⁷, Lianxin Liu⁶⁸, Weilin Wang⁶⁹, Tingbo Liang⁷⁰, Jiahong Dong⁷¹, Xiaoping Chen¹⁹, Xuehao Wang⁷², Shusen Zheng⁷³, Jia Fan¹, Alliance of Liver Cancer Conversion Therapy, Committee of Liver Cancer of the Chinese Anti-Cancer Association

Chen X et al. Front Oncol. 2021.
 Zhou J et al. Liver Cancer 2020.
 Sun HC et al. Hepatobiliary Surg Nutr. 2022.

Conversion surgery is associated with better survival benefit than palliative care or upfront surgery in patients with intermediate/advanced-stage HCC

OS with conversion-surgery was significantly better than non-surgical palliative care¹

24-month survival rates were 95.8% vs 35.8% for patients who underwent vs did not undergo conversion surgery

• Study enrolled 101 patients who received combined TKI/anti-PD-1 antibodies as 1L treatment for initially uHCC, including 24 patients (23.8%) who underwent R0 resection after initiation of systemic therapy

The DFS of conversion-surgery was significantly higher than upfront surgery²

mDFS was not reached vs 5.4 months for patients with conversion-surgery vs upfront surgery

 30 patients with initially uHCC receiving triple combination therapy (t-CT) were enrolled, 15 of whom underwent conversion-surgery

TALENTop IIS: Hepatic Resection with Peri-operative Atezo/Bev in HCC Patients with MVI

 A multicentre, randomised, open-label study evaluating the efficacy and safety of hepatic resection for HCC with macrovascular invasion after initial atezolizumab plus bevacizumab therapy

PR: partial response; SD: stable disease; Q3W: once every 3 weeks; MVI: macrovascular invasion; PVTT: portal vein tumor throm bosis; EHS: extrahepatic spread; IV: intravenous; INV: investigator; IRF: Independent review facility; RFS: recurrence-free surviva; pCR: pathological complete regression; TTEHS: time to EHS after randomization; ECOG: Eastern Cooperative Oncology Group; PS: performance status.

TALENTop IIS Update: Conversion response and prognostic factors

From Apr 2021 to Dec 2022, 201 patients were enrolled and entered induction phase and completed induction phase therapy of atezo/bev at cut-off date (Apr 2023). Treatment efficacy in induction phase is analysed. Study is ongoing.

Baseline clinical characteristics of enrolled patients

Characteristic	n=201
Age, years	
Median (Range)	55 (26–78)
Aetiology (%)	
HBV	187 (93)
Vessel characteristic (%)	
MVI	201(100)
PVTT	191 (95)
Vp classification, n (%)	
Vp1	3 (1.5)
Vp2	37 (18.4)
Vp3	108 (53.7)
Vp4	43 (21.4)
Tumour size by IRF (mm)	
Mean	100
Range	26-231

Tumour response of enrolled patients

n=201	RECIST1.1, n (%)	mRECIST
ORR,%	38 (18.9)	47 (23.4)
PR	38 (18.9)	46 (22.9)
SD	106 (52.7)	97 (48.3)
DCR,%	71.6	144 (71.7)

In univariate logistic regression, the following clinical measures were associated with randomization (i.e. high viability for conversion):

VP1-2 PVTT

AFP <400 ng/mL

NLR (neutrophil-to-lymphocyte ratio) <2.63

Tumor diameter <100 mm

Of 201 patients, **73 patients (36.3%) were evaluated as suitable for R0 resection and randomized**. Atezo/bev showed high response rate and conversion rate in the HCC patients with MVI, suggesting a promising conversion strategy in this population.

Sequential transarterial chemoembolisation and stereotactic 💃 🖲 body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma (START-FIT): a single-arm, phase 2 trial

Chi Leung Chiang*, Keith Wan Hang Chiu, Kenneth Sik Kwan Chan, Francis Ann Shing Lee, James Chun Bong Li, Catherine Wing Suet Wan, Wing Chiu Dai, Tai Chung Lam, Wengi Chen, Natalie Sean Man Wong, Andy Lai Yin Cheung, Venus Wan Yan Lee, Vince Wing Hang Lau, Aya El Helali, Kwan Man, Feng Ming (Spring) Kong, Chung Mau Lo, Albert Chi-Yan Chan*

> C В A 100 100 100 Progression-free survival (%) 80. 80 80 (scal control rate (%) Overal Isurvival (%) 60-60 -60 Median progression-free survival Median overall survival-40 40-40 20-7 months (95% Cl 14-6-26-8) 30-3 months (95% Cl 22-7-NII) Median local control rate: NP 6-month rate: 73% (95% CI 54-85) 6-month rate: 98% (95% Ci 94-100) 6-month rate: 91% (95% CI 74-97) 20 20-20 12-month rate: 52% (95% CI 33-68) 12-month rate: 72% (95% Cl 53-84) 12-month rate: 92% (95% Cl 84-100) 24-month rate: 38% (95% Cl 17-59) 24-month rate: 92% (95% CI 84-100) 2.4-month rate: 69% (95% (149-83) 0 0 24 30 20 12 30 Time since transarterial chemicembolisation (months) Time since transacterial chemoembolisation (months) Time since transarterial chemoembolisation (months) 25(1) Number at risk 5 (15) 52(15) 52(18) 33 (O) 21(1)20(8) 16(11) 24(2) -24(9) 23(12) 22 (17) 54(2)52(9) 52 (26) 33 (D) 30(1)55(0) (censored)

Figure 3: Survival outcomes and local control

(A) Progression-free survival, per patient (n=33). (B) Overall survival, per patient (n=33). (C) Local control, per lesion (n=55). NP=not reached.

Chiang CL....Chan AC. Lancet Gastro & Hepatol 2023 Feb

Operation /

Observation

M/70, STEMI 2021 with PCI, AF Non-B, Non-C HCC – 10.6x7.6x8.7 cm ICG 20.2%, LFT normal, Plt 142x109/L,

Inoperable due to small left liver and borderline ICG

TACE x 1 24.5.2023 SBRT (5Gy x 5) 26-30.6.2023 Atezo + Bev 24.7.2024 Q3W x 11 cycles

Now eligible for S4/5 wedge resection

5cm mass with capsular retraction, hypoenhancing core c/w necrosis

M/36, Good past health HBV-HCC 11.8x8.7x11.3 cm Bilirubin 10 umol/L, ALP 305 u/L, GGT 238 u/L, AST 298 u/L

Would require a left trisectionectomy if proceed

- Close margin
- Inadequate remnant volume
- Bile duct compression, may required bile duct resection and reconstruction
 - 1. ERCP + biliary stenting 16.1.2024
 - 2. LFT improved
 - 3. TACE 21.2.2024
 - 4. SBRT (5Gy x 5) 18-22 March 2024
 - 5. A + B started on 12.4.2024 x 5 cycles
- Would only require an extended left hepatectomy now
- Simpler operation
- More remnant reserve

Current status and questions to be answered with conversion therapy

Wang et al. Cancer Science. 2024.

Challenge of pre-transplant immunotherapy and posttransplant immunosuppression

VITALITy: Validate Immunotherapy for HCC pre-Liver Transplant

- First, multicenter US study (2016 to 2023) to evaluate immune checkpoint inhibitors pre-LT
- High downstaging percentage (76%) and survival rates (3-yr ITT OS 71%)

Study also highlights the potential efficacy of combining LRT with ICI. This strategy could be beneficial for high-risk patients, including those requiring downstaging or with elevated AFP levels despite LRTs.

ImmunoXXL: ITT analysis of atezo-bev for downstaging in HCC

- Observational, prospective, single-arm multicenter study evaluating LT in HCC with partial/complete and sustained (>3 months) response to atezo+bev (i.e. achieving >=60% post-transplant survival according to the Metroticket 2.0 calculator)
- A minimum washout period of 30 days prior to LT is required

Conclusion

- Surgical resection is a common treatment option in APAC. However, clinical outcomes of surgical resection in HCC remains poor with high recurrence rates.
- IMbrave050 was the first Phase 3 study to demonstrate that an adjuvant immunotherapy-based regimen could delay recurrence following curative intent resection or ablation at the prespecified IA. While initial RFS benefit with was not sustained over time, questions still remain on optimal duration and patient selection for adjuvant therapy.
- A number of early peri-operative trials also suggest that combination immunotherapies may be useful towards conversion and expanding eligibility for liver transplantation (downstaging) in select high-risk patients.
- A multidisciplinary, collaborative approach is essential to tailor individualized treatment plans and establish the most appropriate treatment sequence.