LEAD APAC HCC Expert Meeting, Oct 26, 2024

The Big Picture: Comprehensive HCC Management in Japan

Masatoshi Kudo, MD, PhD Dept. of Gastroenterology and Hepatology Kindai University Faculty of Medicine

Outline

- Overview of HCC trend in Japan
- Overview of HCC outcome in Japan
- Overview of HCC surveillance in Japan
- Treatment strategy for Early-stage HCC
- Treatment strategy for Intermediate HCC
- Treatment strategy for Advanced stage HCC
- Summary and Conclusion

Outline

Overview of HCC trend in Japan

Citation from [National Cancer Center Japan] (https://ganjoho.jp/reg_stat/statistics/stat/cancer/8_liver.html)

Changing Aetiology of HCC in Japan: Multicentre Study

Tateishi R, et al. J Gastroenterol 2019

Changing Aetiology of HCC in Japan: JLCA Nationwide Follow-up Survey

■ NBNC ■ HCV ■ HBV

Kudo M. Liver Cancer 2023

Initial Treatment Modality for Detected HCC: JLCA Nationwide Follow-up Survey

Outline

• Overview of HCC outcome in Japan

Surveillance: Japan as a successful model

- Results of Nationwide Surveillance of HCC by JLCA
- Regional Difference of OS Results According to GIDEON, Non-interventional Study
- Treatment Outcome in Japan and Hong Kong: Effect of Nationwide Surveillance

Improvement 5-year survival rate and median OS in Japan in patients with all BCLC stage HCC

24th Nation-wide Registry, JLCA

Initial Treatment Modality for Detected HCC: JLCA Nation-wide Registry Follow-up Survey

Bruix et al : Hepatology 2011 Mar;53(3):1020-2

Bruix et al : Hepatology 2011 Mar;53(3):1020-2

Bruix et al : Hepatology 2011 Mar;53(3):1020-2

Number of Nodules at the Time of Initial Detection (n=19,536)

21st Nation-wide Follow-up Survey, Japan Liver Cancer Association, 2020

Presence or Absence of Extrahepatic Spread at the Time of Initial Detection (n=19,887)

21st Nation-wide Follow-up Survey, Japan Liver Cancer Association, 2020

Surveillance: Japan as a successful model

 Regional Difference of OS Results According to GIDEON, Non-interventional Study

HCC Global Non-interventional Study: GIDEON

Time from initial diagnosis to death by region

- Time from initial diagnosis to death was longest in Japan
- We also have to understand a caveat of lead-time bias

20

Kudo M, et al. Liver Int 2016

Time from initial diagnosis to death by BCLC stage at initial diagnosis

Median time from initial diagnosis to death, months (95% CI)	AP <i>n</i> =955	EU <i>n</i> =1115	LA <i>n</i> =90	USA <i>n</i> =553	Japan <i>n</i> =500	Overall <i>N</i> =3213ª
BCLC stage A	54.0	49.3	23.3	24.9	91.0	59.2
(<i>n</i> =686)	(10.3-NA)	(42.3-58.0)	(17.2-NA)	(18.4-53.5)	(76.6-113.1)	(51.9-67.5)
BCLC stage B	31.0	27.3	22.2	19.7	47.9	29.9
(<i>n</i> =633)	(18.4-47.7)	(23.0-33.1)	(12.9-NA)	(11.1-36.8)	(40.9-86.2)	(25.6-39.0)
BCLC stage C	10.3	11.0	11.2	8.5	27.7	10.6
(<i>n</i> =973)	(262-409)	(8.9-13.0)	(3.1-NA)	(6.2-10.2)	(16.6-40.8)	(9.4-12.4)
BCLC stage D	8.9	11.0	NA	7.5	13.1	8.9
(<i>n</i> =91)	(8.6-14.8)	(4.2-21.7)		(4.5-12.8)	(NA-NA)	(6.2-13.1)
Overall	20.9	25.0	19.5	14.8	79.6	25.5
	(17.3-25.2)	(22.9-28.7)	(13.5-NA)	(13.1-17.0)	(62.1-96.0)	(23.9-28.3)

• Time from initial diagnosis to death was longest in Japan, irrespective of BCLC stage

Kudo M, et al. Liver Int 2016

Global Non-Interventional Registry Time from Initial Diagnosis to Death by BCLC stage

BCLC stage B

BCLC stage A

BCLC stage C

Kudo M et al. Liver Int. 2016;36(8):1196-205

Surveillance: Japan as a successful model

 Treatment Outcome in Japan and Hong Kong: Effect of Nationwide Surveillance

Screening/Surveillance For HCC

The clinical perception

- Advanced/terminal HCCs are incurable and fatal
- Small/early HCCs can be "cured" by surgery/Tp/RFA etc.
- If screening can deliver small/early HCC, the prognosis should be improved

The epidemiological perception

The aim of screening is to decrease the disease-specific mortality

Comparison of Hong Kong & Japan Survival A Natural Experiment

Country	Hong Kong*	Japan**
Healthcare system	Modern and sophisticated	Modern and sophisticated
Race	Oriental	Oriental
Transplant program	No	No
Incidence/aetiology	High - Mainly HBV	High - Mainly HCV
Screening programme	None	Mature, long-standing, intensive, national

*Profs Winnie Yeo, Paul Lai and Stephan China, Chinese University and Prince of Wales Hospital, Hong Kong **Takashi Kumada, Hidenori Toyoda, Ogaki Municipal Hospital, Ogaki, Japan

Overall Survival in Japan and Hong Kong

So, What Accounts For These Differences?

- ? Age & Gender NO
- ? C-P status NO
- ? Aetiology Yes, but relatively minor
- ? Is HCC in Japan 'just different'
- ? Disease stage
- ? Lead time bias

Changes In Survival In Japan Since Inception of Screening

So, What Accounts For These Differences?

Age & Gender ? – NO C-P status ? - NO Aetiology ? – Maybe Yes, but relatively minor Is HCC in Japan 'just different' ? NO Disease stage? Lead-time bias ?

% Of Patients With Curative Treatments, Early Stage BCLC And Within Milan Criteria

Country	Curative Rx (%)	BCLC 0 and A (%)	Within Milan Criteria (%)	
Japan	71.2 (n=2594)	65.7 (n=685)	58.9 (n=2473)	
Hong Kong	15.7 (n=1112)	15.1 (n=517)	8.4 (n=1066)	

1 year survival (%)		Japan	Hong Kong, China	
HCV	BCLC early (0 and A)	92.6	83.3	
HBV	BCLC early (0 and A)	94.8	89.9	
2 year survival (%)		Japan	Hong Kong, China	
HCV	BCLC early (0 and A)	81.9	75.0	
HBV	BCLC early (0 and A)	74.2	76.9	

So, What Accounts For These Differences?

Age & Gender ? – NO C-P status ? - NO Aetiology ? – Maybe Yes, but relatively minor Is HCC in Japan 'just different' ? NO Disease stage? NO Lead-time bias ?

Impact of Screening - Allowing For Lead Time Bias*

	Subjects N=	Median in months(CI)		Subjects N=	Median in months(CI)
Unscreened	794	7.5 (6-9)	Unscreened	794	7.5 (6-9)
Screened	1689	39.4 (36-43)	Screened	1689	22.3(21-25)

*Method reference: Duffy SW, et al., Correcting for lead time bias in estimating the effect of screen detection on cancer survival. Am J Epidemiol. 2008

So, What Accounts For These Differences?

Age & Gender ? – NO C-P status ? - NO Aetiology ? – Maybe Yes, but relatively minor Is HCC in Japan 'just different' ? NO Disease stage? NO Lead-time bias ? NO

Summary and Conclusion

Circumstantial evidence supports surveillance seems to increase likelihood of curative therapy and prolonged survival

Important issue

- Nationwide surveillance <u>DID</u> decrease the disease specific mortality in Japan
- Surveillance is easier/done better in Japan
- Treatment is just better in Japan

Outcome in Japanese patients with HCC seems to be the best in the world *in terms of nationwide survival rate* mainly due to early detection of HCC through established nation-wide surveillance program.

Outline

Overview of HCC surveillance in Japan
JSH clinical practice guideline for surveillance and diagnosis of HCC

JSH HCC Clinical Practice Guideline 2005, 2009, 2013, 2017, 2021

Typical Nationwide Surveillance Methods: Definition of High-risk Group

High-risk

- Chronic hepatitis B
- Chronic hepatitis C
- Liver cirrhosis

Very-high-risk

- Hepatitis B cirrhosis
- Hepatitis C cirrhosis

In practice, non-cirrhotic MASH/MASLD patients are under surveillance as **medium risk patients**

This strategy is now under discussion in the currently ongoing revised guideline committee and may be included in the next version of JSH HCC Clinical Practice Guideline

Tumor Markers for HCC in Japan

- AFP
- AFP-L3
 - Lectin-binding fraction of AFP
- PIVKA-II (DCP)
 - Prothrombin induced by Vit. K absence (des-γ -carboxyprothrombin)

All are covered by social health insurance in Japan.

Figure 1. Distribution of patients with HCC according to tumor marker elevation. Cutoff values were set at 400 ng/mL for AFP, 15% for AFP-L3, and 100 mAU/mL for DCP.

Since there is no correlation between these 3 tumour markers, AFP, DCP (PIVKA-II), and AFP-L3 play a complementary role.

Comparison of TM Positive Rates by Etiology

<Cut-off value>

AFP: 100 ng/dL, L3: 10%, DCP: 100 mAU/mL

<Cut-off value>

Kudo M. Liver Cancer 2023

TM Positive Rates by Aetiology

<Cut-off value>

TM Positive Rates by Aetiology

<Cut-off value>

AFP: 20 ng/dL, L3: 10%, DCP: 40 mAU/mL

AFP positive

double positive(L3&DCP) single positive(L3)

single positive(DCP)
triple negative

<Cut-off value>

AFP: 100ng/dL, L3: 10%, DCP: 100 mAU/mL

Kudo M. Liver Cancer 2023

Clinical practice guideline

Recommendation

For the surveillance of small hepatocellular carcinoma, measurement of two or more tumor markers is recommended. (grade A)

Follow up methods for high risk patients in all over Japan

- Medium Risk patients (??)
 - US at intervals of 12mo.
 - AFP/PIVKA-II/AFP-L3 every 12mo.
 - FIB4 index, PLT count every 12 mo.

- High Risk patients
 - US at intervals of 6mo.
 - AFP/PIVKA-II/AFP-L3 every 6mo.

- Very High Risk patients
 - US every 3-4 mo.
 - AFP/PIVKA-II/AFP-L3 every
 3-4 mo.
 - Option: dynamic CT/EOB-MRI every 6-12 mo.

These HCC surveillance program has been well implemented throughout Japan since education to patients and private practitioner were established since 1980s.

Outline

Treatment strategy for Early-stage HCC

JSH HCC Guidelines 2021 Algorithm for Treatment

Hasegawa K, Tateishi R, Kudo M, et al. Hepatol Res. 2023

Resection

- Child-Pugh grade A
- Solitary tumour
 - Laparoscopic and robotic surgery are reimbursed and frequently performed.

Special technique (ICG injection into the portal branch) for anatomical resection

Makuuchi M, et al: Surg Gynecol Obstet 161:346-350,1985より改変

Special technique (ICG injection into the portal branch) for anatomical resection

This technique remove enough tumour, preventing recurrence, while preserving liver function

Makuuchi M, et al: Surg Gynecol Obstet 161:346-350, 1985より改変

Overall Survival by Surgical Resection (n=33,652)

Kudo M, et al. 22nd Nation-wide follow-up survey by JLCA. Hepatol Res. 2022

Liver Transplantation

20 y survival rate: 60%

Japan Transplant Society: 2017

Ablation (Radiofrequency ablation, RFA)

Ablation with enough safety margin

Post-treatment CT

Overall Survival by Radiofrequency Ablation (RFA) (n=21,048)

Kudo M, et al. 22nd Nation-wide follow-up survey by JLCA. Hepatol Res. 2022

SURF Trial: Prospective multicenter P3 trial OS, Surgery vs. RFA

Median follow-up time Surgery: 6.4 years RFA: 6.6 years

Presented By: Masatoshi Kudo, MD, PhD

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

JSH HCC Guidelines 2021 Algorithm for Treatment

Hasegawa K, Tateishi R, Kudo M, et al. Hepatol Res. 2023

Outline

Treatment strategy for Intermediate HCC

JSH HCC Guidelines 2021 Algorithm for Treatment

Hasegawa K, Tateishi R, Kudo M, et al. Hepatol Res. 2023

<u>Rvusaku Yamada, M.D.</u> Morio Sato, M.D. Mamoru Kawabata, M.D. Haruki Nakatsuka, M.D. Kenji Nakamura, M.D. Sumio Takashima, M.D. Hepatic Artery Embolization in 120 Patients with Unresectable Hepatoma¹

Invention of TACE: first in the world in Japan in 1983 by Prof. Yamada

Transcatheter hepatic artery embolization was performed in 120 patients with unresectable hepatoma. The cumulative one-year survival rate was 44%. In most cases follow-up angiography revealed the selective disappearance of tumor vessels, and computed tomography demonstrated a marked decrease in tumor density without any changes in the surrounding liver parenchyma. Histologic examination in 14 cases confirmed these findings.

Index terms: Arteries, therapeutic blockade, 9.129 • (Hepatic artery, therapeutic embolization, 9[52].129) • (Liver, malignant hepatoma, 7[61].329) • Liver neoplasms, blood supply • Liver neoplasms, therapy

Radiology 148: 397-401, August 1983

H^{EPATOMA} is a relatively common malignant tumor in Japan, and patients with this neoplasm have a poor prognosis. The first choice of treatment is hepatectomy, but most cases are considered inoperable due to extreme tumor extension at the time of diagnosis and accompanying advanced cirrhosis. According to the 1979 report of the Liver Cancer Study Group of Japan (1), only 9% of hepatoma patients underwent hepatectomy. The report also concluded that the one-year survival rate after surgery was only 28%. Chemotherapy produced even worse results: the survival rate one year after treatment was 7%, and the mean length of survival was 3 to 6 months.

Since 1977 we have performed transcatheter arterial embolization in 120 cases of unresectable hepatoma. This report describes our experience with embolization, which demonstrates far more satisfactory results than other existing treatments.

MATERIALS AND METHODS

Two hundred thirty-five embolization procedures were performed in 120 patients with unresectable hepatoma from June 1977 to May 1982. Repeat embolizations (2 to 7 procedures) were performed in 45%

Changing Treatment Strategy of Intermediate Stage-HCC

Non-selective TACE

Non-selective TACE

Superselective cTACE

Intraarterial Lipiodol regurgitate to the PV, via PBP or drainage vessel

Superselective cTACE

Intraarterial Lipiodol regurgitate to the PV, via PBP or drainage vessel

Subsegmental cTACE by Lip-cTACE

Grade of regurgitation of Lipiodol in the portal vein correlates to the local control rate.

Miyayama S, Matsui O. 2016;27:1269–1278. Miyayama S, et al. JVIR 2007;18:365-376

Overall Survival by TACE (n=20,163)

Kudo M, et al. 22nd Nationwide follow-up survey by JLCA. Hepatol Res. 2022

President Study: Multicenter Prospective RCT

Selective cTACE achieves higher CR rate

CR rate at 3 months

Ikeda M, et al. Liver Cancer 2022

Heterogeneity and treatment strategy of intermediate stage HCC (Kinki Criteria)

APPLE Consensus Statements

APPLE Consensus Members

Masatoshi Kudo (Kindai University)

Sheng-Long Ye

Jian Zhou

Kwang-Hyub Han (Severance Hospital, Yonsei University)

(Zhongshan Hospital, Fudan University)

(Zhongshan Hospital, Fudan University)

Yi-Hsiang Huang

(National Yang-Ming University)

Masafumi Ikeda (National Cancer Hospital East)

Chung-Kwe Wang

(Taipei City Hospital)

Su Pin Choo (CURIE Oncology)

Shiro Miyayama (Fukui-ken Saiseikai Hospital)

Shi-Ming Lin (Chang-Gung Memorial Hospital Linkou)

Ann Lii Cheng (National Taiwan University) **Consensus Statement**

Liver Cancer

A Changing Paradigm for the Treatment of Intermediate-Stage Hepatocellular Carcinoma: Asia-Pacific Primary Liver Cancer Expert Consensus Statements

Masatoshi Kudo^a Kwang-Hyub Han^b Sheng-Long Ye^c Jian Zhou^d Yi-Hsiang Huang^{e, f} Shi-Ming Lin^{g, h} Chung-Kwe Wangⁱ Masafumi Ikeda^j Stephen Lam Chan^k Su Pin Choo¹ Shiro Miyayama^m Ann Lii Cheng^{n-p} on behalf of the APPLE Association

^aDepartment of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan; ^bDepartment of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; ^cLiver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; ^dDepartment of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; ^eDivision of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; fInstitute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; ^gDepartment of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taiwan; hCollege of Medicine, Chang Gung University, Taoyuan City, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch and Kang Ning Hospital, Taipei, Taiwan; ^JDepartment of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa-shi, Japan; * Department of Clinical Oncology, State Key Laboratory of Translation Oncology, The Chinese University of Hong Kong, Hong Kong, China; ¹Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; ^mDepartment of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan; ⁿDepartment of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; ^oDepartment of Oncology, National Taiwan University Hospital, Taipei, Taiwan; ^pGraduate Institute of Oncology, School of Medicine, National Taiwan University, Taipei, Taiwan

Kudo M et al, Liver Cancer 2020
Criteria for TACE unsuitability

APPLE Consensus Statement

CQ.9: What is TACE-unsuitable?

(i) Unlikely to respond to TACE:

Confluent multinodular type, massive or infiltrative type, simple nodular type with extranodular growth, poorly differentiated type, intrahepatic multiple disseminated nodules, or sarcomatous changes after TACE (ii) Likely to develop TACE failure/refractoriness: up-to-7 criteria out nodules

(iii) Likely to become Child-Pugh B or C after TACE:

up-to-7 criteria out nodules (especially, bilobar multifocal HCC), mALBI grade 2b

JSH Consensus Staement

Table 6-22 : TACE-unsuitable patient population

1 Likely to develop TACE failure/refractoriness

·up-to-7 criteria out nodules

②Likely to become Child-Pugh B after TACE

•up-to-7 criteria out nodules
(especially, bilobar multifocal HCC)
•ALBI grade 2 (especially mALBI grade2B)

3Unlikely to respond to TACE

- •Confluent multinodular type, massive or infiltrative type
- •simple nodular type with extranodular growth
- poorly differentiated type
- intrahepatic multiple disseminated nodules
- •sarcomatous changes after TACE

Kudo M et al :Treatment of Intermediate-Stage HCC: APPLE Consensus Statement. Liver Cancer 2020 Kudo M, et al. JSH Consensus Liver Cancer 2021. Kudo M, et al. JSH: Clinical practice manuals for hepatocellular carcinoma 4th edition, 2020.

TACTICS-L Study Schema

- A Phase 2, prospective, multicentre, single-arm study was conducted at 21 Japanese institutions between February 2019 and April 2021.
- Efficacy assessments were performed on the ITT population (All eligible subjects). Safety assessments were
 performed on subjects who received at least one dose of lenvatinib or TACE procedure

- The combination of TACE and lenvatinib (12 mg once daily ≥ 60 kg and 8 mg once daily < 60 kg) was applied and continued until the event specified in the PFS definition occurred.
 - ✓ TACE(cTACE) should be repeated on demand once the specified TACE criteria was met.
 - ✓ Tumor assessment should be done 4 weeks after first TACE and then every 8 weeks.

[レンバチニブ添付文書抜粋]

4. 効能または効果:切除不能な肝細胞癌

5.効能又は効果に関連する注意:5.3局所療法(経皮的エタノール注入療法、ラジオ波焼灼療法、マイクロ波凝固療法、肝動脈 寒栓療法/肝動脈化学寒栓療法、放射線療法等)の適応となる肝細胞癌患者に対する本剤の有効性及び安全性は確立していない。

Tumor responses (per RECICL) in subjects

ORR of LEN+TACE

Tumor response (Patient N=62)	CR, n (%)	PR, n (%)	SD, n (%)	PD, n (%)	ORR, n (%) (90% CI)
4 weeks after first TACE ^a	33	16	4	2	49 (79.0)
	(53.2)	(25.8)	(6.5)	(3.2)	(68.7 - 87.1)
Bost rosponso ^b	42	13	1	2	55 (88.7)
Dest response	(67.7)	(21.0)	(1.6)	(3.2)	(79.8 - 94.6)

a: Not evaluable: n=7, b: Not evaluable: n=4

DoR rate

DoR rate	Best Resp	$O_{VORD} \left(0/c \right)$	
(n=55)	PR (n=13)	CR (n=42)	Overall (%)
6 months (90% CI) ^a	61.5 (36.0, 79.4)	95.1 (85.0, 98.4)	87.0 (77.1, 92.8)
12 months (90% CI) ^a	28.8 (10.4, 50.6)	57.2 (42.5, 69.5)	50.5 (38.2, 61.6)

LEN-TACE achieved 68% CR (Best response) Duration of response was >12M in more than 50 % of patients

Kudo M, et al. Liver Cancer 2023.

TACTICS-L (LEN+TACE)

TACTICS-L ORR Sub-group analysis (4 weeks after first TACE)

Category		n	ORR, n	90% CI	CR, n
Derformance status n (0/)	0	59	47 (79.7%)	69.1%-87.8%	32 (54.2%)
Performance status, II (%)	1	3	2 (66.7%)	13.5%-98.3%	1 (33.3%)
	Hepatitis B	8	6 (75.0%)	40.0%-95.4%	5 (62.5%)
Etiology, n (%)	Hepatitis C	20	15 (75.0%)	54.4%-89.6%	9 (45.0%)
	Non-B Non-C	31	25 (80.6%)	65.3%-91.2%	16 (51.6%)
Child Dugh cooke n (0()	5	51	43 (84.3%)	73.5%-91.9%	30 (58.8%)
Child-Pugn Score, n (%)	6	11	6 (54.5%)	27.1%-80.0%	3 (27.3%)
$\Lambda ED n (%)$	<200 ng/mL	52	42 (80.8%)	69.6%-89.2%	28 (53.8%)
AT F, II (70)	≥200 ng/mL	10	7 (70.0%)	39.3%-91.3%	5 (50.0%)
Milan criteria, n (%)	Within	28	22 (78.6%)	62.0%-90.2%	18 (64.3%)
	Outside	34	27 (79.4%)	64.8%-89.9%	15 (44.1%)
Up to $7 $ critoria $n(0/)$	Within	40	30 (75.0%)	61.3%-85.8%	22 (55.0%)
op to 7 criteria, n (%)	Outside	22	19 (86.4%)	68.4%-96.2%	11 (50.0%)
	Α	25	18 (72.0%)	53.8%-86.1%	16 (64.0%)
BCLC stage, n (%)	B1	15	12 (80.0%)	56.0%-94.3%	6 (40.0%)
	B2	22	19 (86.4%)	68.4%-96.2%	11 (50.0%)
Dries TACE $n(0/)$	0	35	29 (82.9%)	68.9%-92.3%	19 (54.3%)
	1-2	26	19 (73.1%)	55.3%-86.6%	14 (53.8%)

Etiology: unknown n=3, Prior TACE: unknown n=1

Kudo M, et al. Liver Cancer 2023.

TACTICS-L (LEN+TACE)

TACTICS-L ORR Sub-group analysis (4 weeks after first TACE)

Category		n	ORR, n	90% CI	CR, n
Deufeurere etetue a (0/)	0	59	47 (79.7%)	69.1%-87.8%	32 (54.2%)
Performance status, II (%)	1	3	2 (66.7%)	13.5%-98.3%	1 (33.3%)
	Hepatitis B	8	6 (75.0%)	40.0%-95.4%	5 (62.5%)
Etiology, n (%)	Hepatitis C	20	15 (75.0%)	54.4%-89.6%	9 (45.0%)
	Non-B Non-C	31	25 (80.6%)	65.3%-91.2%	16 (51.6%)
Child Durch seems in (0()	5	51	43 (84.3%)	73.5%-91.9%	30 (58.8%)
Child-Pugh score, n (%)	6	11	6 (54.5%)	27.1%-80.0%	3 (27.3%)
AEP n (%)	<200 ng/mL	52	42 (80.8%)	69.6%-89.2%	28 (53.8%)
AT F, II (70)	≥200 ng/mL	10	7 (70.0%)	39.3%-91.3%	5 (50.0%)
	Within	28	22 (78.6%)	62.0%-90.2%	18 (64.3%)
Milan Criteria, n (%)	Outside	34	27 (79.4%)	64.8%-89.9%	15 (44.1%)
Up to 7 emitoria $n(0/)$	Within	40	30 (75.0%)	61.3%-85.8%	22 (55.0%)
Op to 7 criteria, n (%)	Outside	22	19 (86.4%)	68.4%-96.2%	11 (50.0%)
	Δ	25	18 (72 0%)	53 8%-86 1%	16 (64 0%)
Regardless of Up-to-7 in/out, CR rate was >50%			>50%		
		<u> </u>			TT (2010 /0)
Drior TACE p (%)	0	35	29 (82.9%)	68.9%-92.3%	19 (54.3%)
	1-2	26	19 (73.1%)	55.3%-86.6%	14 (53.8%)

Etiology: unknown n=3, Prior TACE: unknown n=1

Kudo M, et al. Liver Cancer 2023.

Results of the interim follow-up analysis

OS of 40.1 months in Intermediate-stage HCC is the longest in Prospective Trial.

Data cutoff, Apr 2023 Unpublished data

Atezo+Bev Curative Conversion Therapy

Kudo M et al, Liver Cancer 9: 367-377, 2020.

70s, NASH, BCLCB S5: 45 mm, S7: 125 mm, Atz/Bev

Baseline	6 week	12 week
	mRECIST / RECIST v1.1	mRECIST / RECIST v1.1
S5: 45 mm	SD / SD	PR / SD
S7: 125 mm	Pseudoprogression like / SD	PR / PR

Courtesy: Dr. Abe and Kuroda, Iwate Medical University

70s, NASH, BCLCB S5: 45 mm, S7: 125 mm, Atz/Bev conventional TACE

	6 week	12 week	30 week
	mRECIST / RECISTv1.1	mRECIST / RECISTv1.1	RECICL
S5: 45 mm	SD / SD	PR / SD	CR
S7: 125 mm	Pseudoprogression like / SD	PR / PR	PR

28 week

Courtesy: Dr. Abe and Kuroda, Iwate Medical University

70s, NASH, BCLCB S5: 45 mm, S7: 125 mm, Atz/Bev ABC conversion(MWA) → Drug free

	6 week	12 week	30 week	48 week
	mRECIST / RECISTv1.1	mRECIST / RECISTv1.1	RECICL	RECICL
S5: 45 mm	SD / SD	PR / SD	CR	CR
S7: 125 mm	Pseudoprogression like / SD	PR / PR	PR	CR

Proof-of-Concept Study: ABC conversion therapy

Liver	Cancer
HERE'S AVE	0011001

Research Article

Liver Cancer DOI: 10.1159/000529574 Received: August 15, 2022 Accepted: February 1, 2023 Published online: February 7, 2023

7 Multicentre study

Kindai U. [n=38], MRCH [n=36], SGH [n=10], Tokushima U[n=13], TRCH [n=9], Nagasaki U [2], Iwate U [4]

Achievement of Complete Response and Drug-Free Status by Atezolizumab plus Bevacizumab Combined with or without Curative Conversion in Patients with Transarterial Chemoembolization-Unsuitable, Intermediate-Stage Hepatocellular Carcinoma: A Multicenter Proof-Of-Concept Study

Masatoshi Kudo^a Tomoko Aoki^a Kazuomi Ueshima^a Kaoru Tsuchiya^b Masahiro Morita^a Hirokazu Chishina^a Masahiro Takita^a Satoru Hagiwara^a Yasunori Minami^a Hiroshi Ida^a Naoshi Nishida^a Chikara Ogawa^c Tetsu Tomonari^d Noriaki Nakamura^e Hidekatsu Kuroda^f Atsushi Takebe^g Yoshifumi Takeyama^g Masaaki Hidaka^h Susumu Eguchi^h Stephen L Chanⁱ Masayuki Kurosaki^b Namiki Izumi^b TACE Unsuitable Intermediate-stage Child-Pugh A 1st line Atezo+Bev Consecutive cases [n=110]

Curative Conversion

[Endpoints] CR rate, drug-free rate, time to CR, change in liver function, efficacy in PET-positive HCC, PFS, and

Kudo M, Aoki T, Ueshima, et al. Liver Cancer 2023.

ABC Conversion rate in Intermediate-stage HCC

TACE Unsuitable Intermediate-stage HCC (1st line Atezo+Bev, Child-Pugh A, Consecutive cases [n=110]) Atezo + Bev \bigcirc Curative Conversion +/- Locoregional Tx/Op $\begin{cases} \cdot \text{Resection} & 7 \\ \cdot \text{Ablation (TACE} \rightarrow \text{RFA/MWA}) & 13 \\ \cdot \text{TACE or LEN-TACE} & 15 \\ \cdot \text{Atezo+Bev only} & 3 \end{cases}$

Cancer Free Rate <u>35%</u> (38/110)

(Drug free rate 23% [n=25/110])

7 Multicenter study (Kindai U. [n=38], MRCH [n=36], SGH [n=10], Tokushima U[n=13], TRCH [n=9], Nagasaki U [2], Iwate U [4])

Kudo M, et al. Liver Cancer 2023, https://doi.org/10.1159/000529574

Drug-Off Criteria in Patients with Hepatocellular Carcinoma Who Achieved Clinical Complete Response after Combination Immunotherapy Combined with Locoregional Therapy

Masatoshi Kudo

Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan

Keywords

Hepatocellular carcinoma · Systemic therapy · Locoregional therapy · Clinical complete response · Drug-off criteria

Introduction

Hepatocellular carcinoma (HCC) is refractory to treat-

Prof. M. Kudo

Editor Liver Cancer

Kudo M. Liver Cancer 2023

Drug-off Criteria (Clinical CR [close to pCR])

Achievement of drug free status is highly suggestive of pCR

- **①** CR (RECIST/mRECIST) on imaging (CT/MRI)
- ② Normalized all 3 TMs (AFP, DCP, AFP-L3) (>12–24 weeks)
- ③ No intratumoral arterial flow on Contrast-enhanced US (CEUS)

Consider <u>Drug-off</u> when all of 3 conditions are fulfilled.

Kudo M. Liver Cancer 2023

Duration of follow up: 21.2 months

Kudo M, et al. Liver Cancer 2023, https://doi.org/10.1159/000529574

Duration since ATZ+BV initiation [weeks]

Duration of follow up: 21.2 months

Kudo M, et al. Liver Cancer 2023, https://doi.org/10.1159/000529574

■60s, male BCLC stage B (UT7-out) IO combination + cTACE → Resection

■60s, male BCLC stage B (UT7-out) IO combination + cTACE → Resection

S3

Complete necrosis in all 3 nodules (Pathological CR) Ant seg.

20

70s, Male, NBNC (alcohol), S8 63mm, solitary, BCLC stage B HCC

Before Treatment

After ABC TACE Sandwich Therapy

Decreased FDG uptake Tumor shrinkage

Laparoscopic subsegmentectomy

Pathological CR

IMbrave150: Survival analysis by DpR subgroups

DpR [%]

Kaplan-Meier Plot of Overall Survival by Depth of Response based on IRF-Assessment per RECIST v1.1: IMbrave150 exploratory analysis

Protocol: YO40245 Analysis: Atezo + Bev arm, Measurable Disease at Baseline per IRF RECIST v1.1, Intent-to-Treat Population

Kudo M, et al. Manuscript under review 2024

OS by DpR in pts receiving atezo+bev SD shrink vs SD non-shrink population

SD patients with growing tumors have poor prognosis \Rightarrow These patients may require early LRT such as TACE.

Kudo M, et al. ESMO Asia 2023; Kudo M, et al. Manuscript under review 2024.

Conversion surgery after ICI+aVEGF+TACE

Zhen ZX, et al.: Liver Cancer 2024;13:498–508.

Conversion surgery after ICI+aVEGF+TACE

ICI+aVEGF⇒TACE⇒ICI+aVEGF before conversion surgery achieves high rate of pathological CR

Znen ZA, et al.: Liver Gancer 2024, 13:490-300.

Llovet JM, Kudo M, et al. Nature Review Clin Oncol 2024

Treatment Strategy for Intermediate stage HCC

Kudo M. Int J Clin Oncol 2022.

Evolving treatment landscape in intermediate-stage uHCC

Outline

Treatment strategy for Advanced stage HCC
JSH HCC Guidelines 2021 Algorithm for Treatment

Hasegawa K, Tateishi R, Kudo M, et al. Hepatol Res. 2023

History of Drug Approval in HCC in Japan

JSH-HCC Guidelines: Algorithm for systemic therapy

JSH Clinical Practice Guideline for HCC 2023.

Positive phase III trials - Efficacy

Trial	IMbrave150 ^{1,2}	HIMALAYA ³	REFLECT ⁴
Treatment Arm	Atezolizumab + Bevacizumab	Durvalumab + Tremelimumab	Lenvatinib
mOS (months)	19.2	16.4	13.6
	(Sorafenib 13.4)	(Sorafenib 13.8)	(Sorafenib 12.3)
HR (95% CI)	0.66	0.78	0.92
	95% CI (0.52-0.85)	(0.65–0.93)	(0.79-1.06)
mPFS (months)	6.9	3.78	7.4
	(Sorafenib 4.3)	(Sorafenib 4.07)	(Sorafenib 3.7)
HR (95% CI)	0.65	0.90	0.66
	(0.53-0.81)	(0.77–1.05)	(0.0.57-0.77)
ORR (%; RECIST 1.1 confirmed)	30.0	20.1	24.1 per mRECIST
PD (%, RECIST 1.1)	19.0	40.0	15.0 per mRECIST

Positive phase III trials - Safety

Trial	IMbrave150 ^{1,2}	HIMALAYA ³	REFLECT ⁴
Treatment Arm	Atezolizumab + Bevacizumab	Durvalumab + Tremelimumab	Lenvatinib
Treatment Duration	8.4 mo (Atezo) 7.0 mo (Bev)	5.5 mo	5.7 mo
TRAE Rate	86%	76%	94%
G≥3 TRAE rate	43%	26%	57%
AEs leading to discontinuation	22%	14%	20%
irAEs requiring corticosteroid	12%	20%*	N.A.

*High-dose steroid only

1st Line Treatment for Advanced HCC

*Tolerable for G3/4 irAE: Pts with good PS, good liver function, younger age, no severe/active comorbidity (CVD, etc), No Vp3/4

JSH HCC Guidelines 2021 Algorithm for Treatment

Hasegawa K, Tateishi R, Kudo M, et al. Hepatol Res. 2023

Continuous HAIC using implanted port

Continuous HAIC with implanted port

(n=649)

HAICvs Sorafenib -PSM study-

HAIC: 10.6 months [95% CI 9.1–14.3] Sorafenib: 9.1 months [95% CI 6.8–12.0] HR: 0.667 [95% CI 0.475–0.935] p = 0.018

HAIC is effective for PVTT

HAIC: 12.2 months [95% CI 9.9–16.5] Sorafenib: 15.4 months [95% CI 9.7–19.1] HR: 1.227 [95% CI 0.699–2.155] p = 0.475

Ueshima K, Kudo M et al. Liver Cancer. 2020;9(5):583-95.

Phase 3 SILIUS Trial: OS sub-analysis

Sorafenib vs. Sorafenib plus HAIC (Low-dose FP)

HAIC is still performed in pts with MVI (Vp3/4) in Japan.

HAIC is effective for Vp4 patients

Kudo M, et al. Lancet Gastroenterol Hepatol 2018

In Japan,

All patients can easily access these high quality, sophisticated treatments including resection, transplantation, ablation, superselective TACE, combination of systemic and locoregional therapy and combination Immunotherapy at referral institute in all over Japan by fully covered insurance

Outline

Summary and Conclusion

Conclusion

- Surveillance of HCC at high-risk patients can detect many small curable HCC, leading to receiving potentially curative therapy (Resection, Ablation, transplantation), providing patients a very long survival.
- Combination of systemic/IO and LRT, especially ABC conversion, has become a SOC in intermediate-stage HCC
- ➤3 tumor markers are essential from the surveillance to treatment monitoring/drug-free decision making.
- IO plus anti-VEGF/IO-IO regimen is the 1st choice of 1st line treatment in advanced HCC, however, HAIC is still a choice of treatment modality in aHCC with VP3/4

Thank you very much for your kind attention.

CARDED IN THE REPORT OF THE PARTY OF THE PAR

and the part of th

of the second second second

THE COLOR DESCRIPTION OF THE REAL PROPERTY AND ADDRESS OF THE

A THE OTHER DESIGNATION CONTRACTOR CONTRACTOR CONTRACTOR OF A DESIGNATION OF AND THE OWNERS AND PROPERTY AND ADDRESS OF TAXABLE AND ADDRESS OF TAXABLE ADDRESS

THE OWN CASE OF A

of the local division of the local divisione

And the local of

ALCONOMIC ADDRESS OF

AN OTHER DRAMAGE AND DRAMAGE AND ------The set law and the set of the set law in 10.00

CONTRACTOR OF

Kindai University, Japan